Math, asked by durgaieeswarin, 14 days ago

fast ,I will mark as brainlist​

Attachments:

Answers

Answered by kingofself
0

Solution -

Base = Side adjacent to the angle

Perpendicular = Side opposite to the angle

a) i) cos B =  \frac{Base}{Hypotenuse}

 For angle B, Base = 8, Hypotenuse = 17

 cos B =  \frac{8}{17}

ii) tan C = \frac{Perpendicular}{Base}

  For angle C, Perpendicular = 8

  Base = AC = \sqrt{(17)^{2} - (8)^{2}  } = \sqrt{225} = 15

  tan C = \frac{8}{15}

iii) sinB. cosC + cosB.sinC = 1

    cos B = \frac{8}{17},  sin B = \frac{15}{17}

    cos C = \frac{15}{17},  sin C = \frac{8}{17}

    Putting the values in above equation we get,

    (\frac{15}{17}) (\frac{15}{17} ) + (\frac{8}{17})(\frac{8}{17} ) = 1 \\\\ (\frac{15}{17})^{2}  + (\frac{8}{17})^{2} = 1 \\ (\frac{225+64}{289} ) = 1 \\ (\frac{289}{289} ) = 1\\1 = 1

    Hence proved.

Similar questions