Prove that the perpendicular drawn from a vertex to base of an isosceles triangle bisects the vertical angle .
Answers
Answer:
Let ABC be an isosceles triangle such that AB=AC.
Let AD be the bisector of ∠A.
To prove:- BD=DC
Proof:-
In △ABD&△ACD
AB=AC(∵△ABC is an isosceles triangle)
∠BAD=∠CAD(∵AD is the bisector of ∠A)
AD=AD(Common)
By S.A.S.-
△ABD≅△ACD
By corresponding parts of congruent triangles-
⇒BD=DC
Hence proved that the perpendicular drawn from the vertex angle to the base bisect the vertex angle and base.
Step-by-step explanation:
now please mark me brainly
Answer:
Let ABC be an isosceles triangle such that AB=AC.
Let AD be the bisector of ∠A.
To prove:- BD=DC
Proof:-
In △ABD&△ACD
AB=AC(∵△ABC is an isosceles triangle)
∠BAD=∠CAD(∵AD is the bisector of ∠A)
AD=AD(Common)
By S.A.S.-
△ABD≅△ACD
By corresponding parts of congruent triangles-
⇒BD=DC
Hence proved that the perpendicular drawn from the vertex angle to the base bisect the vertex angle and base.
now please mark me brainly