Math, asked by jashandeep0194, 1 month ago

find :
a+1/a, if a =9 +4√5​

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given:

  • a = 9 + 4√5.

To Find:

  • The value of (a + 1/a).

Solution:

Given,

 \rm \implies a = 9 + 4 \sqrt{5}

 \rm \implies  \dfrac{1}{a}  = \dfrac{1}{9 + 4 \sqrt{5} }

Multiplying both numerator and denominator by (9 - 4√5), we get,

 \rm \implies  \dfrac{1}{a}  = \dfrac{1 \times (9 - 4 \sqrt{5}) }{(9 + 4 \sqrt{5})(9 - 4 \sqrt{5}) }

Using identity (a + b)(a - b) = a² - b², we get,

 \rm \implies  \dfrac{1}{a}  = \dfrac{9 - 4 \sqrt{5}}{(9)^{2} - (4 \sqrt{5})^{2}}

 \rm \implies  \dfrac{1}{a}  = \dfrac{9 - 4 \sqrt{5}}{81 -80}

 \rm \implies  \dfrac{1}{a}  = \dfrac{9 - 4 \sqrt{5}}{1}

 \rm \implies  \dfrac{1}{a}  =9 - 4 \sqrt{5}

Therefore,

 \rm \implies a +  \dfrac{1}{a}  =9 + 4 \sqrt{5}  + 9 - 4 \sqrt{5}

 \rm \implies a +  \dfrac{1}{a}  =18

∆ So, the value of a + 1/a is 18.

Answer:

  • a + 1/a = 18.

•••♪

Similar questions