Math, asked by sasikalaauthistiran, 10 months ago

find a and b if √7-1/√7+1-√7+1/√7-1=a+b​

Answers

Answered by kanchan7050
0

Step-by-step explanation:

We have:

\dfrac{\sqrt{7}-1}{\sqrt{7}+1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}

7

+1

7

−1

7

−1

7

+1

= a + b\sqrt{7}

7

We have to find, the values of a and b are:

Solution:

∴ \dfrac{\sqrt{7}-1}{\sqrt{7}+1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}

7

+1

7

−1

7

−1

7

+1

= a + b\sqrt{7}

7

Rationalising numerator and denominator, we get

\dfrac{\sqrt{7}-1}{\sqrt{7}+1}\times \dfrac{\sqrt{7}-1}{\sqrt{7}-1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}\times \dfrac{\sqrt{7}+1}{\sqrt{7}+1}

7

+1

7

−1

×

7

−1

7

−1

7

−1

7

+1

×

7

+1

7

+1

= a + b\sqrt{7}

7

Using the algebraic identity:

(a + b)(a - b) = a^{2} -b^{2}a

2

−b

2

⇒ $$\dfrac{(\sqrt{7}-1)^2}{\sqrt{7}^2-1^2} }-\dfrac{(\sqrt{7}+1)^2}{\sqrt{7}^2-1^2}$$ = a + b$$\sqrt{7}$$

⇒ $$\dfrac{(\sqrt{7}-1)^2-(\sqrt{7}+1)^2}{\sqrt{7}^2-1^2} }$$ = a + b$$\sqrt{7}$$

⇒ $$\dfrac{(\sqrt{7}-1)^2-(\sqrt{7}+1)^2}{6} }$$ = a + b$$\sqrt{7}$$

Using the algebraic identity:

$$(a-b)^2$$ - $$(a+b)^2$$ = - 4ab

⇒ $$\dfrac{-4(\sqrt{7})(1)}{6} }$$ = a + b$$\sqrt{7}$$

⇒ $$\dfrac{-2\sqrt{7}}{3} }$$ = a + b$$\sqrt{7}$$

⇒ 0 + $$\sqrt{7}$$ $$(\dfrac{-2}{3} })$$ = a + b$$\sqrt{7}$$ ......... (i)

Comparing both sides, we get

a = 0 and b = $$\dfrac{-2}{3}$$

∴ a = 0 and b = $$\dfrac{-2}{3}$$

Thus, the values of a and b are "0 and $$\dfrac{-2}{3}$$ ".

Similar questions