Math, asked by chayan68, 1 year ago

Find a quadratic polynomial each with the given numbers as the zeros of the polynomial
2√3,-2√3​

Answers

Answered by neyaish22934
6

please see the attached photo for your answer

Attachments:

chayan68: is it correct
neyaish22934: yes
neyaish22934: it's correct
neyaish22934: yes this is also correct
neyaish22934: yes bro
Answered by abdul9838
2

 \small \bf \pink{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \pink{ \huge \: solution} \\  \\ \small \bf \pink{given \: that} \\  \\ \small \bf \pink{2 \sqrt{3}  \:  \: and \:  - 2 \sqrt{3} } \\  \\ \small \bf \pink{ \underline{ \underline{step \: by \: step \: explaination}}} \\  \\ \small \bf \pink{let \: be \: } \\  \\ \small \bf \pink{ \alpha  = 2 \sqrt{3} } \\  \\ \small \bf \pink{ \beta  =  - 2 \sqrt{3} } \\  \\ \small \bf \pink{ \huge \: now} \\  \\ \small \bf \pink{ \underline{ \underline{using \: this \: formula}}} \\  \\\small \bf \pink{ (x -  \alpha )(x -  \beta )} \\  \\ \small \bf \pink{(x - 2 \sqrt{3} )(x + 2 \sqrt{3} )} \\  \\ \small \bf \pink{ {x}^{2} + 2 \sqrt{3}x - 2 \sqrt{3}x - 12 = 0   } \\  \\ \small \bf \pink{ {x}^{2}  - 12  \: ans}

Similar questions