Math, asked by krish757846, 9 months ago

find a quadratic polynomial having zeros 2+7√3

Answers

Answered by Nspg
0

Answer:

I explained it step by step

ok

Attachments:
Answered by silentlover45
7

\underline\mathfrak{Given:-}

  • \: \: \: \: \: A \: \: quadratic \: \: polynomial \: \: having \: \: zeroes \: \: {2} \: + \: {7}\sqrt{3}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: A \: \: quadratic \: \: polynomial \: ?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: Let \: \alpha \: \: and \: \: \beta \: \: are \: \: the \: \: zeroes \: \: of \: \: required \: \: polynomial

  • \: \: \: \: \: \: \: \alpha \: \: = \: \: {2} \: + \: {7}\sqrt{3}

  • \: \: \: \: \: \: \: \beta \: \: = \: \: {2} \: - \: {7}\sqrt{3}

\: \: \: \: \: \fbox{\alpha \: + \: \beta }

\: \: \: \: \: \leadsto \: \alpha \: + \: \beta \: \: = \: \: {2} \: + \: {7}\sqrt{3} \: + \: {2} \: - \: {7}\sqrt{3}

\: \: \: \: \: \leadsto \: \alpha \: + \: \beta \: \: = \: \: {4}

\: \: \: \: \: \fbox{\alpha\beta}

\: \: \: \: \: \leadsto\alpha\beta \: \: = \: \: {({2} \: + \: {7}\sqrt{3})} \: \times \: {({2} \: - \: {7}\sqrt{3})}

\: \: \: \: \: \leadsto\alpha\beta \: \: = \: \: {143}

\: \: \: \: \: \underline{Now, \: \: using \: \: Quadratic \: \: polynomial}

\: \: \: \: \: \leadsto {x}^{2} \: - \: {(\alpha \: + \: \beta)} \: x \: + \: \alpha\beta

\: \: \: \: \: \leadsto {x}^{2} \: - \: {(4)} \: x \: + \: {143}

\: \: \: \: \: \leadsto {x}^{2} \: - \: {4x} \: + \: {143}

\: \: \: \: \: \underline{So, \: \: the \: \: required \: \: polynomial \: \: is \: \: {x}^{2} \: - \: {4x} \: + \: {143}}

______________________________________

Similar questions