Physics, asked by ravipotale, 10 months ago

find a unit vector in the direction of vector P = 4i - 8k​

Answers

Answered by HariyaniDev
4

Answer:

\hat P = \frac{1}{\sqrt 5} \hat i - \frac{2}{\sqrt 5} \hat k

Explanation:

Here, \\ \vec P= 4 \hat i - 8\hat k

\therefore | \vec P|=\sqrt{{4}^2+{8} ^ 2}

\therefore |\vec P|=\sqrt {80}

Now, \\ \hat P =\frac{ \vec P}{| \vec P|}

\therefore  \hat P=\frac{ 4 \hat i +8 \hat k}{ \sqrt{80} }

\therefore \hat P= \frac{4 \hat i +8 \hat k}{ 4 \sqrt{5}}

\hat P = \frac{1}{\sqrt 5} \hat i - \frac{2}{\sqrt 5} \hat k

Answered by Adityaboy
0

Answer: =>1/√80 x (4j-8k)

Explanation:

vector P = 4j - 8k

Magnitude of P = |P| = √[(4x4) + (8x8)] = √80

now, unit vector of P = P/|P|

         =>1/√80 x (4j-8k)   = answer :)

Similar questions