Math, asked by tanusritiruvayipati1, 9 months ago

Find absolute value of the difference of the arithmetic progression an if a1+a2=5 and a1^+a2^2=13

Answers

Answered by Swarup1998
8

Arithmetic progression

Given, a_{1}^{2}+a_{2}^{2}=13

\Rightarrow (a_{1}+a_{2})^{2}-2a_{1}a_{2}=13

\Rightarrow 5^{2}-2a_{1}a_{2}=13\quad[\because a_{1}+a_{2}=5]

\Rightarrow 25-2a_{1}a_{2}=13

\Rightarrow 2a_{1}a_{2}=12

\Rightarrow 4a_{1}a_{2}=24

Now, a_{1}+a_{2}=5

\Rightarrow (a_{1}+a_{2})^{2}=5^{2}

\Rightarrow (a_{1}-a_{2})^{2}+4a_{1}a_{2}=25

\Rightarrow (a_{1}-a_{2})^{2}+24=25\quad[\because 4a_{1}a_{2}=24]

\Rightarrow (a_{1}-a_{2})^{2}=1

\Rightarrow a_{1}-a_{2}=\pm 1

\Rightarrow \color{blue}{|a_{1}-a_{2}|=1}

Answer: Hence, absolute value of the common difference is \bold{1}.

Answered by codiepienagoya
3

Given:

a+b=5\\a^2+b^2=13\\

To Find:

|a-b|=?

Solution:

Formula:

(a+b)^2-(a^2+b^2)=2ab\\\\(a-b)^2=(a^2+b^2)-2ab\\\\a-b= \sqrt{(a^2+b^2)-2ab}\\\\

Find the value of ab:

\to 5^2-13=2ab\\\\\to 25-13=2ab\\\\\to 12 =2ab\\\\\to 2ab= 12\\\\\to ab=6\\\\

find a-b:

\to a-b=\sqrt{(a^2+b^2) -2ab}\\\\\to a-b=\sqrt{(13) -2\times 6}\\\\\to a-b=\sqrt{13 -12}\\\\\to a-b=\sqrt{1}\\\\\boxed {\to a-b= 1}\\

The final value is 1.

Similar questions