Math, asked by shashanksinghc3, 6 days ago

find all the zeros of 2x^4 - 3x^3 - 3x^2 +6x -2 if you know that two of its zeros are 1/2 and 1​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) =  {2x}^{4} -  {3x}^{3} -  {3x}^{2} + 6x - 2

and

\rm :\longmapsto\:\dfrac{1}{2}  \: and \: 1 \: are \: zeroes \: of \: f(x)

\rm :\implies\:(x - 1) \: and \: x - \dfrac{1}{2}  \: are \: factors \: of \: f(x)

\rm :\implies\:(x - 1)\bigg(x - \dfrac{1}{2} \bigg) \: is \: a \: factor \: of \: f(x)

\rm :\implies\:(x - 1)\bigg(\dfrac{2x - 1}{2} \bigg) \: is \: a \: factor \: of \: f(x)

\rm :\implies\:\bigg(\dfrac{2 {x}^{2} - 3x  + 1}{2} \bigg) \: is \: a \: factor \: of \: f(x)

\rm :\implies\:2 {x}^{2} - 3x  + 1\: is \: a \: factor \: of \: f(x)

So,

By using long division method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \:  \:  \:  \:  {x}^{2}  \:   - \: 2 \:  \:  \:  \: \:\:}}}\\ {{\sf{ {2x}^{2} - 3x + 1}}}& {\sf{\: {2x}^{4} - {3x}^{3} - {3x}^{2} +6x  -  2 \:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { - 2x}^{4}  + {3x}^{3} -{x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { - 4x}^{2}  + 6x  - 2 \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: { 4x}^{2} - 6x + 2 \:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: 0\:\: \:  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

Now,

We know that

Dividend = Divisor × Quotient + Remainder

\rm :\implies\: {2x}^{4} -  {3x}^{3} -  {3x}^{2} + 6x - 2

\: \rm \:  = \:( {2x}^{2} - 3x + 1)( {x}^{2} - 2) + 0

\: \rm \:  = \:( {2x}^{2} - 3x + 1)( {x}^{2} -  { (\sqrt{2}) }^{2} )

\: \rm \:  = \:( {2x}^{2} - 3x + 1)( {x} -  { \sqrt{2})}(x +  \sqrt{2})

 \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \bigg \}}

\bf\implies \:Remaining \: zeroes \: of \: f(x) =  \sqrt{2}  \: and \:  -  \:  \sqrt{2}

Hence,

 \boxed{ \rm{ \: Zeroes \: of \: f(x) \: are \: 1, \:  \dfrac{1}{2}, \:  \sqrt{2} \: and \:  -  \:  \sqrt{2}}}

Additional Information :-

 \red{\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c \: then }

 \boxed{ \sf{ \:  \alpha +   \beta  =  -  \frac{b}{a}}}

and

 \boxed{ \sf{ \:  \alpha\beta  = \frac{c}{a}}}

 \red{\rm :\longmapsto\: \alpha ,\:  \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} + b {x}^{2}  + cx + d \: then }

 \boxed{ \sf{ \:  \alpha +   \beta  +  \gamma  =  -  \frac{b}{a}}}

 \boxed{ \sf{ \:  \alpha \beta  +   \beta \gamma   +  \gamma  \alpha  = \frac{c}{a}}}

and

 \boxed{ \sf{ \:  \alpha \beta \gamma  =  -  \frac{d}{a}}}

Similar questions