find all the zeros of the polynomial 2x^4-9x^3+5x^2+3x-1 if two of its zeroes are (2+√3)and(2-√3).
Answers
Answered by
2
Hola there..
According to the question,
Two zeroes of polynomial 2x⁴ - 9x³ + 5x² + 3x - 1 are (2 + √3) and (2 - √3)
We can write the zeroes as:
[x - (2 + √3)][x - (2 - √3)]
=> [x - 2 - √3][x - 2 + √3]
=> [x - 2]² - [√3]²
=> x² + 4 - 4x - 3
=> x² - 4x + 1
When we will divide this polynomial with p(x) then we will get other two zeroes.
=> x² - 4x + 1 )2x⁴ - 9x³ + 5x² +3x - 1 (2x² - x - 1
±2x⁴ ± 8x³ ± 2x²
----------------------------------
- x³ + 3x² + 3x - 1
±x³ ± 4x² ± x
-----------------------------
-x² + 4x - 1
±x² ± 4x ± 1
------------------------
0
So, we will get other two zeroes as;
=> 2x² - x - 1
=> 2x² - 2x + x - 1
=> 2x(x - 1) + 1(x - 1)
=> (2x + 1)(x - 1)
=> x = -1/2 and 1
Therefore, zeroes of polynomial
2x⁴ - 9x³ + 5x² + 3x - 1 = (2 + √3), (2 - √3), 1 and -1/2
Hope this helps....:)
According to the question,
Two zeroes of polynomial 2x⁴ - 9x³ + 5x² + 3x - 1 are (2 + √3) and (2 - √3)
We can write the zeroes as:
[x - (2 + √3)][x - (2 - √3)]
=> [x - 2 - √3][x - 2 + √3]
=> [x - 2]² - [√3]²
=> x² + 4 - 4x - 3
=> x² - 4x + 1
When we will divide this polynomial with p(x) then we will get other two zeroes.
=> x² - 4x + 1 )2x⁴ - 9x³ + 5x² +3x - 1 (2x² - x - 1
±2x⁴ ± 8x³ ± 2x²
----------------------------------
- x³ + 3x² + 3x - 1
±x³ ± 4x² ± x
-----------------------------
-x² + 4x - 1
±x² ± 4x ± 1
------------------------
0
So, we will get other two zeroes as;
=> 2x² - x - 1
=> 2x² - 2x + x - 1
=> 2x(x - 1) + 1(x - 1)
=> (2x + 1)(x - 1)
=> x = -1/2 and 1
Therefore, zeroes of polynomial
2x⁴ - 9x³ + 5x² + 3x - 1 = (2 + √3), (2 - √3), 1 and -1/2
Hope this helps....:)
Answered by
1
Answer:
Hope this helps you ✌️✌️
Attachments:
Similar questions