Math, asked by chakiyakadali, 1 year ago

find all zeroes of the polynomial 2x4-2x3-7x2+3x+6 if two of its zeroes are-root3/2 and root3/2

Answers

Answered by Laasya
288
(x-√3/2)(x+√3/2)=x²-3/2
g(x)=x²-3/2
p(x)=2x^4-2x³-7x²+3x+6
then q(x)=2x²-2x-4
⇒2x²-2x-4=2x²+2x-4x-4=2x(x+1)-4(x+1)=(2x-4)(x+1)
⇒2x-4=0         or               ⇒  x+1=0
⇒x=2               or                ⇒  x= -1
Answered by HrishikeshSangha
0

The zeroes are 2, -1, \bf \frac{\sqrt3}{\sqrt2}, and \bf \frac{-\sqrt3}{\sqrt2}.

Given:

The polynomial 2x^4-2x^3-7x^2 +3x+6

Two of its zeroes are \frac{\sqrt3}{\sqrt2} and \frac{-\sqrt3}{\sqrt2}

To Find:

The other roots of the polynomial

Solution:

As the two zeroes are given, we can find the factors of the polynomial which are x-\frac{\sqrt3}{\sqrt2} and x+\frac{\sqrt3}{\sqrt2}.

Therefore

[x+\frac{\sqrt3}{\sqrt2}][x-\frac{\sqrt3}{\sqrt2}]= x^2-1.5

Dividing the polynomial by this expression we will get

\frac{2x^4-2x^3-7x^2 +3x+6}{x^2-1.5} = \frac{2x^2[x^2-1.5]-2x^3-4x^2+3x+6}{x^2-1.5}\\\\ 2x^2+\frac{-2x^3-4x^2+3x+6}{x^2-1.5}= 2x^2+\frac{-2x[x^2-1.5]-4x^2+6}{x^2-1.5}\\\\2x^2-2x +\frac{-4x^2+6}{x^2-1.5}=2x^2-2x+\frac{-4[x^2-1.5]}{x^2-1.5}=2x^2-2x-4

2x^2-2x-4=2x^2-4x+2x-4\\\\2x^2-4x+2x-4=2x[x-2]+2[x-2]\\\\2x[x-2]+2[x-2]=2[x-2][x+1]

Therefore the zeroes of the polynomial are 2, -1, \bf \frac{\sqrt3}{\sqrt2}, and \bf \frac{-\sqrt3}{\sqrt2}.

#SPJ2

Similar questions