Math, asked by sanghvirina, 11 months ago

Find alpha and beta and verify
3x^2+2√3x+1

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha=\frac{-\sqrt{3}}{3}}}}\\

\green{\tt{\therefore{\beta=\frac{-\sqrt{3}}{3}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given:}} \\  \tt:  \implies 3{x}^{2}  + 2 \sqrt{3} x + 1 = 0 \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Value \: of \:  \alpha  \: and \:  \beta  = ?

• According to given question :

 \tt:  \implies 3 {x}^{2} + 2 \sqrt{3}x + 1 = 0 \\  \\   \tt\circ  \:  a = 3  \\  \\  \tt \circ \: b = 2 \sqrt{3} \\  \\  \tt \circ \: c = 1   \\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies D =  {b}^{2}  - 4ac \\  \\  \tt:  \implies D= {(2 \sqrt{3} )}^{2}   - 4 \times 3 \times 1 \\  \\ \tt:  \implies D =12 - 12 \\  \\ \tt:  \implies D=0 \\  \\  \tt:  \implies x =  \frac{ - b \pm \sqrt{d} }{2a}  \\  \\ \tt:  \implies d = \frac{ - 2 \sqrt{3}  \pm \sqrt{0} }{2 \times 3}  \\  \\ \tt:  \implies x =  \frac{ - 2 \sqrt{3} }{6}  \\  \\  \green{\tt:  \implies x = \frac{ -  \sqrt{3} }{3} } \\  \\    \green{\tt\therefore  value \: of \:  \alpha  =  \frac{ -  \sqrt{3} }{3} } \\  \\ \green{\tt\therefore  value \: of \:  \beta  =  \frac{ -  \sqrt{3} }{3} }

Answered by Saby123
4

</p><p>\tt{\huge{\pink {Hello!!! }}}

</p><p>\tt{\green{Given \: Quadratic \: Equation \: - }}

 \tt{ \red { =  &gt;  3 {x}^{2}  + 2 \sqrt{3} x + 1}}

 \tt{ \blue{d \:  =  \:  \sqrt{ {b}^{2} - 4ac \:  } = 0 } }</p><p>

</p><p>\tt{\orange{Values \: Of \: \alpha \: and \: \beta = \begin{cases}</p><p></p><p>\dfrac{1}{\sqrt{3}} &amp; \text{alpha} \\</p><p> \\ \\</p><p>\dfrac{-1}{\sqrt{3}} &amp; \text{beta}</p><p></p><p>\end{cases}}}</p><p>

</p><p>\tt{\huge{\purple {Verification \: - }}}

We Know That The Value Of D is zero.

Hence D^2 is zero.

=>b^2 = 4 ac.

Now verify.

Similar questions