Math, asked by joeljomon10a, 2 months ago

find alphacube + beta cube, if alpha and beta are the zeroes of the polyinomial 2x^2-x+5

Answers

Answered by Anonymous
16

Solution -

Given polynomial,

  • 2x² - x + 5

It is given that α and β are the zeroes of the given polynomial. Firstly, we have to find the α + β.

  • Sum of zeroes = \sf{\dfrac{-b}{a}}

\tt\dashrightarrow{\alpha + \beta = \dfrac{-(-1)}{2}}

\tt\dashrightarrow{\alpha + \beta = \dfrac{1}{2}}

Similarly,

  • Product of zeroes = \sf{\dfrac{c}{a}}

\tt\dashrightarrow{\alpha \beta = \dfrac{5}{2}}

Now,

  • α² + β² = (α + β)² - 2αβ

\tt\dashrightarrow{\alpha^2 + \beta^2 = \bigg( \dfrac{1}{2} \bigg)^2 - 2 \times \dfrac{5}{2}}

\tt\dashrightarrow{\alpha^2 + \beta^2 = \dfrac{1}{4} - 5}

\tt\dashrightarrow{\alpha^2 + \beta^2 = \dfrac{1 - 20}{4}}

\tt\dashrightarrow{\alpha^2 + \beta^2 = \dfrac{-19}{4}}

Now, we need to find

  • α³ + β³

\bf{\longmapsto{\boxed{\pink{\alpha^3 + \beta^3 = ( \alpha + \beta ) (\alpha^2 + \beta^2 - \alpha \beta )}}}}

\tt\longrightarrow{\alpha^3 + \beta^3 = \bigg( \dfrac{1}{2} \bigg) \bigg( \dfrac{5}{2} - \dfrac{(-19)}{4} \bigg)}

\tt\longrightarrow{\alpha^3 + \beta^3 = \bigg( \dfrac{1}{2} \bigg) \bigg( \dfrac{5}{2} + \dfrac{19}{4} \bigg)}

\tt\longrightarrow{\alpha^3 + \beta^3 = \bigg( \dfrac{1}{2} \bigg) \bigg( \dfrac{10 + 19}{4} \bigg)}

\tt\longrightarrow{\alpha^3 + \beta^3 = \dfrac{1}{2} \times \dfrac{29}{4}}

\bf\longrightarrow{\purple{\alpha^3 + \beta^3 = \dfrac{29}{8}}}

\: \: \: \underline{\sf{Thus,\: value \: of\: \alpha^3 + \beta^3\: is \: \dfrac{29}{8}}}

Similar questions