find angle between 2N and 3N forces if their resultant is 4N
Answers
Answered by
7
Heya.......!!!
Resultant of two Vectors is
![\sqrt{a {}^{2} + b {}^{2} + 2ab \cos( \alpha ) } \\ \\ here \: a \: and \: b \: are \: two \: vectors \: \\ \: \alpha \: is \: the \: angle \: between \: them \: \: \\ \\ now \: putting \: the \: values \: in \: th e \: formulae \: \: we \: get \: \\ \\ \: \: \: \sqrt{2 {}^{2} + 3 {}^{2} + 2 \times 2 \times 3 \cos( \alpha ) } = 4 \: \\ squaring \: both \: the \: sides \: we \: get \: \\ \\ 13 + 12 \cos( \alpha ) = 16 \\ 12 \cos( \alpha ) = 3 \\ \cos( \alpha ) = 3 \div 12 \\ \cos( \alpha )= 1 \div 4 \\ \alpha = \cos( {}^{ - 1}) \frac{1}{4} \sqrt{a {}^{2} + b {}^{2} + 2ab \cos( \alpha ) } \\ \\ here \: a \: and \: b \: are \: two \: vectors \: \\ \: \alpha \: is \: the \: angle \: between \: them \: \: \\ \\ now \: putting \: the \: values \: in \: th e \: formulae \: \: we \: get \: \\ \\ \: \: \: \sqrt{2 {}^{2} + 3 {}^{2} + 2 \times 2 \times 3 \cos( \alpha ) } = 4 \: \\ squaring \: both \: the \: sides \: we \: get \: \\ \\ 13 + 12 \cos( \alpha ) = 16 \\ 12 \cos( \alpha ) = 3 \\ \cos( \alpha ) = 3 \div 12 \\ \cos( \alpha )= 1 \div 4 \\ \alpha = \cos( {}^{ - 1}) \frac{1}{4}](https://tex.z-dn.net/?f=+%5Csqrt%7Ba+%7B%7D%5E%7B2%7D++%2B+b+%7B%7D%5E%7B2%7D++%2B+2ab+%5Ccos%28+%5Calpha+%29+%7D++%5C%5C++%5C%5C+here+%5C%3A+a+%5C%3A+and+%5C%3A+b+%5C%3A+are+%5C%3A+two+%5C%3A+vectors+%5C%3A+++%5C%5C+%5C%3A++%5Calpha++%5C%3A+is+%5C%3A+the+%5C%3A+angle+%5C%3A+between+%5C%3A+them+%5C%3A++%5C%3A++%5C%5C++%5C%5C+now+%5C%3A+putting+%5C%3A+the+%5C%3A+values+%5C%3A+in+%5C%3A+th+e+%5C%3A+formulae+%5C%3A++%5C%3A+we+%5C%3A+get+%5C%3A++%5C%5C++%5C%5C+%5C%3A+++%5C%3A++%5C%3A++%5Csqrt%7B2+%7B%7D%5E%7B2%7D+%2B+3+%7B%7D%5E%7B2%7D++%2B+2+%5Ctimes+2+%5Ctimes+3+%5Ccos%28+%5Calpha+%29++%7D++%3D+4+%5C%3A++%5C%5C+squaring+%5C%3A+both+%5C%3A+the+%5C%3A+sides+%5C%3A+we+%5C%3A+get+%5C%3A++%5C%5C++%5C%5C+13+%2B+12+%5Ccos%28+%5Calpha+%29++%3D+16+%5C%5C+12+%5Ccos%28+%5Calpha+%29++%3D+3+%5C%5C++%5Ccos%28+%5Calpha+%29+%3D+3+%5Cdiv+12+%5C%5C++%5Ccos%28+%5Calpha++%29%3D+1+%5Cdiv+4+%5C%5C+++%5Calpha++%3D++%5Ccos%28+%7B%7D%5E%7B+-+1%7D%29++%5Cfrac%7B1%7D%7B4%7D+)
HOPE IT HELPS U
Resultant of two Vectors is
HOPE IT HELPS U
Similar questions