Math, asked by mohanlalmmdeepa, 5 months ago

Find CosA, if sinA=3/4​

Answers

Answered by Anonymous
3

Solution:-

Given

 \rm \implies \:  \sin A =  \dfrac{3}{4}

To find

 \rm \implies \: the \: value \: of \:  \cos A

Now take

\rm \implies \:  \sin A =  \dfrac{3}{4}  =  \dfrac{p}{h}

Using pythagoras theorem

Where

 \implies \rm p = 3 \:  \: , \: h = 4 \: and \: b = x

 \rm \implies {h}^{2}  =  {b}^{2}  +  {p}^{2}

 \rm \implies \:  {4}^{2}  =  {x}^{2}  +  {3}^{2}

 \rm \implies \: 16 =  {x}^{2}  + 9

 \rm \implies {x}^{2}  = 16 - 9 = 7

 \rm \implies \: x = b =  \sqrt{7}

So

 \rm \cos \: A \:  =  \dfrac{ \sqrt{7} }{4}   = \dfrac{b}{h}

More solution:-

 \rm \implies  \tan A =  \dfrac{3}{ \sqrt{7} }  =  \dfrac{p}{b}

 \rm \implies \csc A =  \dfrac{4}{3}  =  \dfrac{h}{p}

 \rm  \implies \:  \sec  A   =  \dfrac{ 4 }{ \sqrt{7} }  =  \dfrac{h}{b}

 \rm \implies \cot A =  \dfrac{  \sqrt{7}  }{ 3}  =  \dfrac{b}{p}

Answered by BrainlyHero420
11

Answer:

Given :-

  • sinA = \dfrac{3}{4}

To Find :-

  • What is the value of cosA

Solution :-

Given : sinA = \dfrac{3}{4}

we know that,

\mapsto sinA = \dfrac{perpendicular}{hypotenuse} = \dfrac{3}{4}

Let, perpendicular (BC) = 3x

And, hypotenuse (AC) = 4x

Now, by using Phythagorus Theorem we know that,

\boxed{\bold{\large{AB\: =\: \sqrt{{AC}^{2} - {BC}^{2}}}}}

⇒ AB = \sqrt{({4x})^{2} - ({3x})^{2}}

⇒ AB = \sqrt{{16x}^{2} - {9x}^{2}}

⇒ AB = \sqrt{{7x}^{2}}

➠ AB = \sqrt{7}x

Hence, the value of cosA is,

cosA = \dfrac{base}{hypotenuse}

cosA = \dfrac{AB}{AC}

cosA = \dfrac{\sqrt{7}x}{4x}

cosA = \dfrac{\sqrt{7}}{4}

\therefore The value of cosA is \dfrac{\sqrt{7}}{4}

_____________________________

Similar questions