Math, asked by rushaali2963, 1 year ago

Find d/dx tan⁻¹ √1+x-√1-x/√1+x+√1-x, | x | < 1

Answers

Answered by MohdAaqib
0
so this is the answer
Attachments:
Answered by sandy1816
1

y =  {tan}^{ - 1} ( \frac{ \sqrt{1 + x}  -  \sqrt{1 - x} }{ \sqrt{1 + x}  +  \sqrt{1 - x} } ) \\  \\ put \:  \:  \:  \: x = cos2 \theta \\  \\  2 \theta =  {cos}^{ - 1} x \\  \\  \theta =  \frac{1}{2} {cos}^{ - 1}x  \\  \\    y = {tan}^{ - 1} ( \frac{ \sqrt{1 + cos2 \theta}  -  \sqrt{1 - cos 2\theta} }{ \sqrt{1 + cos2  \theta}  +  \sqrt{1 - cos \theta} } ) \\  \\  y=  {tan}^{ - 1} ( \frac{ \sqrt{2 {cos}^{2} \theta }  -  \sqrt{ 2{sin}^{2}  \theta} }{ \sqrt{2 {cos}^{2}  \theta} +  \sqrt{2 {sin}^{2} \theta }  } ) \\  \\  y=  {tan}^{ - 1} ( \frac{cos \theta - sin \theta}{cos \theta + sin \theta} ) \\  \\ y =  {tan}^{ - 1} ( \frac{1 - tan \theta}{1 + tan \theta} ) \\  \\y  =  {tan}^{ - 1} tan( \frac{\pi}{4}  -  \theta) \\  \\  y=  \frac{\pi}{4}  -  \theta \\  \\ y =  \frac{\pi}{4}  -  \frac{1}{2}  {cos}^{ - 1} x \\  \\  \frac{dy}{dx}  = 0 -  \frac{1}{2}  \frac{ - 1}{ \sqrt{1 -  {x}^{2} } }  \\  \\  \frac{dy}{dx}  =   \frac{1}{2 \sqrt{1 -  {x}^{2} } }

Similar questions