Math, asked by sachin200378, 11 months ago

find derevative of x^8+x​

Answers

Answered by NaveenZ
1

The solution is given in the above attachment.

Attachments:
Answered by charliejaguars2002
2

Answer:

\Large\boxed{\mathsf{8x^7+1}}}

Step-by-step explanation:

QUESTION:

Find derivative of x⁸+x.

TO FIND:

The derivative of x⁸+x.

You can also isolate it on one side of the equation.

SOLUTIONS:

First, use apply the sum & difference rule.

\Large\boxed{\mathsf{SUM \quad DIFFERENCE \quad RULE}}

\displaystyle \mathsf{(F\pm G)'=F' \pm G'}

\displaystyle \mathsf{\frac{d}{dx}\left(x^8\right)+\frac{d}{dx}\left(x\right)}}}

Power rule.

\Large\boxed{\mathsf{POWER \quad RULES}}

\displaystyle \mathsf{\frac{d}{dx}\left(x^a\right)=a* x^{a-1}}}}

\displaystyle \mathsf{8x^{8-1}}

Solve.

Subtract the numbers from left to right.

\displaystyle \mathsf{8-1=7}

\displaystyle \mathsf{8x^7}}}

Common derivative.

\displaystyle \mathsf{\frac{d}{dx}\left(x\right)}}}

\displaystyle \mathsf{\frac{d}{dx}(x)=1 }

\displaystyle \mathsf{\Rightarrow8x^7+1}}

\Large\boxed{\mathsf{8x^7+1}}

The correct answer is 8x⁷+1.

Similar questions