Math, asked by debpriyanshu, 4 months ago

find derivative of (i)cot^-1(cosx-sinx)/(cosx+sinx)​

Answers

Answered by Anonymous
8

Given Expression,

 \sf \: f(x) = {cot}^{ - 1}  \bigg( \dfrac{cos \: x - sin \: x}{cos \: x + sin \: x}  \bigg)

We know that,

 \star \:  \boxed{ \boxed{ \sf  {tan}^{ - 1}  x =  {cot}^{ - 1} \big( \dfrac{1}{x}   \big)}}

Dividing the numerator and denominator by sin x,

 \longrightarrow \:  \sf \: f(x) = {tan}^{ - 1}  \bigg( \dfrac{ \frac{cos \: x  + sin \: x}{cos \: x}}{ \frac{cos \: x  -  sin \: x}{cos \: x}}  \bigg)  \\  \\ \longrightarrow \:  \sf f(x) = {tan}^{ - 1}  \bigg( \dfrac{tan( \frac{\pi}{4})  + tan \: x}{1 - tan \: x.tan( \frac{\pi}{4}  )}  \bigg)

We know that,

 \star \:  \boxed{ \boxed{ \sf  {tan}^{}(  x  + y) =   \frac{tan \: x + tan \: y}{1 - tan \: x.tan \: y}  \big)}}

Thus,

 \longrightarrow \sf \: f(x) = {tan}^{ - 1} \bigg( tan(x +  \dfrac{\pi}{4}) \bigg) \\  \\  \longrightarrow \sf \:  f(x) = x +  \dfrac{\pi}{4} \\ \\  \longrightarrow \boxed{\boxed{ \sf \:  f'(x) = 1}}

Similar questions