Math, asked by scera7007, 1 year ago

Find derivative of tan square root x by first principle

Answers

Answered by harman3416
3

Answer:

f

(

x

)

=

1

2

x

sec

2

x

We note that,

(

1

)

tan

(

A

B

)

=

tan

A

tan

B

1

+

tan

A

tan

B

(

2

)

lim

θ

0

tan

θ

θ

=

1

Explanation:

Here,

f

(

x

)

=

tan

x

For first principle method, we take

f

(

x

)

=

lim

t

x

f

(

t

)

f

(

x

)

t

x

f

(

x

)

=

lim

t

x

tan

t

tan

x

t

x

=

lim

t

x

tan

t

tan

x

1

+

tan

t

tan

x

t

x

×

(

1

+

tan

t

tan

x

)

=

lim

t

x

(

tan

(

t

x

)

t

x

)

×

lim

t

x

(

1

+

tan

t

tan

x

)

=

(

1

+

tan

x

tan

x

)

lim

t

x

(

tan

(

t

x

)

t

x

)

1

t

+

x

=

(

1

+

tan

2

x

)

lim

(

t

x

)

0

(

tan

(

t

x

)

t

x

)

1

t

+

x

=

(

sec

2

x

)

(

1

)

(

1

x

+

x

)

f

(

x

)

=

1

2

x

sec

2

x

Similar questions