find derivative of the above question with respect to x
Answers
Answer
dy/dx = √( 1 - y² ) / √ ( 1 - x² )
Step-by-step explanation:
Given --->
√( 1 - x² ) + √( 1 - y² ) = a ( x - y )
Concept used --->
1) First we used substitution as
x = Sin α and y = Sinβ
2) Then we solve it and differentiate by using formulee of differentition
a ) d / dx ( sin⁻¹ x ) = 1 / √( 1 - x² )
Solution -----> ATQ,
√( 1 - x² ) + √( 1 - y² ) = a ( x - y )
Let
x = Sinα , y = Sinβ
=> α = Sin⁻¹ x , β = Sin⁻¹ ( y )
=> √( 1 - Sin²α ) + √( 1 - Sin²β ) = a ( Sinα - Sinβ )
We know that , 1 - Sin²θ = Cos²θ , applying it we get,
=> √( Cos²α ) + √( Cos²β ) = a ( Sinα - Sinβ )
=> Cosα + Cosβ = a ( Sinα - Sinβ )
Now , we have two formulee , as follows ,
CosC + CosD = 2 Cos ( C + D / 2 ) Cos ( C - D / 2 )
SinC - SinD = 2 Cos ( C + D / 2 ) Sin ( C - D / 2 )
Applying these we get,
=> 2 Cos(α + β / 2 ) Cos ( α - β/2 )
= a 2 Cos ( α + β /2 ) Sin ( α - β / 2 )
2 Cos ( α + β / 2 ) is cancel out from each side ,
=> Cos ( α - β / 2 ) = a Sin ( α - β / 2 )
=> Cos ( α - β / 2 ) / Sin ( α - β / 2 ) = a
=> Cot ( α - β / 2 ) = a
=> Cot⁻¹ Cot ( α - β / 2 ) = Cot⁻¹ a
=> ( α - β ) / 2 = Cot⁻¹ a
=> α - β = 2 Cot⁻¹ a
=> Sin⁻¹ x - Sin⁻¹ y = 2 Cot⁻¹ a
Now , differentiating with respect to x , we get ,
=> d/dx ( Sin⁻¹x ) - d/dx ( Sin⁻¹y ) = d/dx ( 2Cot⁻¹a )
=> 1/√(1 - x²) - 1 / √( 1 - y² ) dy/dx = 0
=> 1 / √( 1 - y² ) dy/dx = 1 / √( 1 - x² )
=> dy/dx = √( 1 - y² ) / √( 1 - x² )