Math, asked by bunny138, 1 year ago

find derivative of y=cosec(5x)

Answers

Answered by dragomegaman
1
Here is the required answer
Attachments:
Answered by supreethacmsl
1

There are six trigonometric ratios and one of them is cosecant or abbreviated as csc\,\theta or cosec\,\theta .

Things to remember about \bf{cosec\,\theta}

  • cosec\,\theta = \frac{hypotenuse}{opposite\,\, side}
  • cosec\,\theta is the reciprocal of sin\,\theta

        That is,   cosec\,\theta = \frac{1}{sin\,\theta}

To find: The derivative of y = cosec(5x)

Let us find the derivative of cosec(x),

We know that,

               cosec\,x = \frac{1}{sin\,x} = (sinx)^{-1}

Differentiating the above equation, we get,

            \frac{d(cosec(ax))}{dx} =\frac{d(sin(ax))^{-1}}{dx} = -\,(sin(ax))^{-2}\times\frac{d(sin(ax))}{dx}

                                                    =-(sin(ax))^{-2}\times a cos(ax)\\\\=-a\,\frac{cos(ax)}{sin(ax)} \times \frac{1}{sin(ax)}\\\\ =-a\,cot(ax) \,\,cosec(ax)

∴      \bf\frac{d(cosec(ax))}{dx} = -a\,cot(ax)\,\,cosec(ax)

⇒ The derivative of y = cosec(5x) is,

That is,   \frac{d(cosec(5x))}{dx} = -5\,\,cot(5x)\,\,cosec(5x)

                         

Answer:       \bf\frac{d(cosec(5x))}{dx} = -5\,\,cot(5x)\,\,cosec(5x)

             

(#SPJ3)

Similar questions