Math, asked by aashu5740, 4 months ago


Find domain and range of the real function f(x)=
3/1-x2​

Answers

Answered by Asterinn
4

 \rm \: f(x) =  \dfrac{3}{1 -  {x}^{2} }  \\  \\  \rm \longrightarrow1 -  {x}^{2} \neq0 \\  \\  \rm \longrightarrow  {x}^{2} \neq1\\  \\  \rm \longrightarrow  {x}  \neq \: \pm1

Therefore, domain of given function = x ∈ R - {±1}

Now, we will find out range of the function.

Let f(x) be y.

\rm \longrightarrow\: y =  \dfrac{3}{1 -  {x}^{2} }  \\  \\ \rm \longrightarrow\: y ({1 -  {x}^{2} } )=  {3} \\  \\ \rm \longrightarrow\:  ({1 -  {x}^{2} } )=   \frac{3}{y} \\  \\ \rm \longrightarrow\:  {-  {x}^{2} } =   \frac{3}{y}  - 1\\  \\ \rm \longrightarrow\:  { {x}^{2} } =  1 -   \frac{3}{y}  \\  \\ \rm \longrightarrow\:  { {x} } =   \sqrt{1 -   \frac{3}{y}  }  \\  \\ \rm \rightarrow\: y \neq0 \\  \\ \rm \rightarrow1 -   \frac{3}{y}  \geqslant 0\\  \\  \\ \rm \rightarrow1  \geqslant  \frac{3}{y}  \\  \:  \\  \rm \rightarrow \: y  \geqslant  {3} \\  \\  \\   \rm \: \therefore \: range  = y \in \:  [3,\infty)


Rajshuklakld: good
Similar questions