Math, asked by shashank1509, 9 months ago

find dy/dx if x=at,y=at^2​

Answers

Answered by rishu6845
3

Answer:

 \dfrac{dy}{dx}  = 2t

Step-by-step explanation:

Given---->

x \:  = at

y \:  = a {t}^{2}

To find ---->

value \: of \:  \dfrac{dy}{dx}

Concept used---->

1)

 \dfrac{dy}{dx}  =  \frac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }

2)

 \dfrac{d}{dx} ( \:  {x}^{n} ) = n {x}^{n - 1}

Solution---->

x \:  = at

differentiating \: with \: respect \: to \: x \: we \: get

 \dfrac{dx}{dt}  =  \dfrac{d}{dt} ( \: at \: )

 \:  \:  = a \:  \dfrac{d}{dt} ( \: t \: )

 \:  \:  = a \: ( \: 1 \: )

 \:  \:  = a

now

y \:  =  \: a \:  {t}^{2}

differentiating \: with \: respect \: to \: x \: we \: get

 \dfrac{dy}{dt}  =  \dfrac{d}{dt} ( \: a \:  {t}^{2}  \: )

 \dfrac{dy}{dt}  \:  = a \:  \dfrac{d}{dt}  \: ( \:  {t}^{2}  \: )

 \dfrac{dy}{dt}  \:  = a \: (  \: 2 \: t \: )

 \dfrac{dy}{dt}  \:  = 2 \: a \: t

now \:

 \dfrac{dy}{dx}  \:  =  \frac{ \dfrac{dy}{dt} }{ \dfrac{dx}{dt} }

 \dfrac{dy}{dx}  \:  =  \dfrac{2 \: a \: t}{a}

 \dfrac{dy}{dx}  \:  = 2 \: t

Additional information ---->

1)

 \dfrac{d}{dx} ( \:  {x}^{n} ) = n \:  {x}^{n - 1}

2)

 \dfrac{d}{dx}( {e}^{x} )  \:  =  {e}^{x}

3)

 \dfrac{d}{dx} ( \:  {a}^{x} \: )  =  {a}^{x}  log_{e}(a)

Similar questions