Math, asked by sudhanshukumar9958, 11 months ago

if the zero of the quadratic polynomial x2+(a+1)x+b are 2and -3 then find a and b

Answers

Answered by Anonymous
9

{\red{\underline{\underline{\huge{\mathtt{Question:-}}}}}}

if the zero of the quadratic polynomial x²+(a+1)x+b are 2 and -3 then find a and b.

{\red{\underline{\underline{\huge{\mathtt{Solution:-}}}}}}

{\green{\bold{\ Equation→}}}

x²+(a+1)x+b = 0

★ In 1st case , putting x = 2 in the equation ★

x²+(a+1)x+b = 0

→ 2² + (a+1)×2 + b = 0

→ 4 + 2a+2 + b = 0

2a + b = -6....................(i)

★ In 2nd case, putting x= -3 in the equation★

x²+(a+1)x+b = 0

→(-3)² + (a+1) ×(-3) + b = 0

→ 9 - 3a - 3 +b = 0

→ - 3a +b = -6

3a - b = 6................(ii)

{\blue{\bold{By\: elimination:-}}}

2a+b = -6

3a - b = 6

______________

5a = 0

a = 0

✞putting a= 0 in (i) no. equation✞

2a + b = -6

→ 2×0 + b = -6

b = -6

{\red{\underline{\underline{\huge{\mathtt{Answer:-}}}}}}

a = 0

b = -6

Answered by silentlover45
0

  \huge \mathfrak{Answer:-}

\impliesa = 0

\impliesb = -6

\large\underline\mathrm{Given:-}

  • the zero of the quadratic polynomial x²+(a + 1)x + b.

\large\underline\mathrm{To \: find}

  • find a and b.

\large\underline\mathrm{Solution}

  • x²+(a + 1)x + b

\large\underline\mathrm{Putting \: x \: = \: 2 \: in \: the \: equation:-}

\implies x²+(a + 1)x + b

\implies 2²+(a + 1)² + b = 0

\implies 4 + 2a + 2 + b = 0

\implies 2a + b = -6_____(1)

putting x = -3 in the equation.

\implies x²+(a + 1)x + b

\implies -3²+(a + 1)-3 + b = 0

\implies 9 - 3a - 3 + b = 0

\implies 3a + b = -6_____(2)

By Elimination

2a + b = -6

3a + b = -6

____________

5a = 0

\implies a = 0

putting a = 0 in equation (1).

\implies 2a + b = -6

\implies 2(0) + b = -6

\implies 0 + b =-6

hence,

\impliesa = 0

\impliesb = -6

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions