Math, asked by mhemangi4630, 6 months ago

Find, dy/ dx, if x^n+y^n=a^n

Answers

Answered by PharohX
2

Step-by-step explanation:

 {x}^{n}  +  {y}^{n}  =  {a}^{n}  \\  \\ {y}^{n}   = {a}^{n}   - {x}^{n}   \\  \\ y = ({a}^{n}   - {x}^{n})^{ \frac{1}{n} }  \\  \\  \frac{dy}{dx}  =  \frac{d}{dx } ( ({a}^{n}   - {x}^{n})^{ \frac{1}{n} } ) \\  \\  =  \frac{1}{n}  ({a}^{n}   - {x}^{n})^{ \frac{1}{n} - 1 }  \frac{d}{dx} ({a}^{n }  -  {x}^{n} ) \\  =   \frac{1}{n} ({a}^{n}   - {x}^{n}) ^{ \frac{1 - n}{n} } (0 - n {x}^{n - 1} ) \\  =  -  \frac{1}{n}( {a}^{n}   -  {x}^{n} )^{ \frac{1 - n}{n} } (n {x}^{n - 1} )  \\=-( {a}^{n}   -  {x}^{n} )^{ \frac{1 - n}{n} } ( {x}^{n - 1} )</p><p>

Similar questions