Math, asked by nishantkumar530, 9 months ago

Find eqn of ellipse whose focus is (4,9) and (-20,9) and eccentricity is 4.​

Answers

Answered by BrainlyConqueror0901
3

CORRECT QUESTION (as per user request)

Find eqn of ellipse whose focus is (4,9) and (-20,9) and eccentricity is 1/4.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{ {(x+4)}^{2} }{2304}  -  \frac{ {(y-9)}^{2} }{2160}  = 1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = (4,9)\:and\:(-20,9)} \\  \\   \tt{ : \implies Eccentricity(e) = \frac{1}{4}} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\   \  \tt{: \implies Foci = 2ae } \\  \\   \tt{ : \implies Foci =  \sqrt{(4-(-20))^{2}+(9-9)^{2}}=24} \\  \\   \tt{ : \implies 2ae = 24} \\  \\    \tt{: \implies a \times \frac{1}{4} = 12} \\  \\    \green{ \tt{: \implies a= 48 }}\\  \\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {b}^{2}  =  {a}^{2} ( 1-{e}^{2}  )} \\  \\   \tt{:  \implies  {b}^{2}  =  {48}^{2} (1-\frac{1}{16})} \\  \\ \green{   \tt{ : \implies   {b}^{2}  = 2304\times \frac{15}{16}} }\\  \\    \tt{: \implies   {b}^{2} = 2160} \\\\  \tt{:\implies Co-ordinate\:of\:centre=\frac{4-20}{2},\frac{9+9}{2}}\\\\ \tt{:\implies Co-ordinate\:of\:centre=(-4,9) }\\\\  \text{Putting \: given \: values \: in \: (1)} \\  \tt{  : \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \green{ \tt{: \implies  \frac{ {(x+4)}^{2} }{2304}  -  \frac{ {(y-9)}^{2} }{2160}  = 1}}

Similar questions