Math, asked by meesu18, 8 months ago

Find integrate of (sin^2x-cos^2x)/(sinx×cosx) dx.​

Answers

Answered by shadowsabers03
3

We've to evaluate,

\displaystyle\longrightarrow I=\int\dfrac{\sin^2x-\cos^2x}{\sin x\cos x}\ dx

Multiply -1 inside and outside the integral and we get,

\displaystyle\longrightarrow I=-\int\dfrac{\cos^2x-\sin^2x}{\sin x\cos x}\ dx

Multiply and divide 2 on the integral as,

\displaystyle\longrightarrow I=-2\int\dfrac{\cos^2x-\sin^2x}{2\sin x\cos x}\ dx

We know that,

  • \cos^2x-\sin^2x=\cos(2x)
  • 2\sin x\cos x=\sin(2x)

Thus,

\displaystyle\longrightarrow I=-2\int\dfrac{\cos(2x)}{\sin(2x)}\ dx

\displaystyle\longrightarrow I=-\int\dfrac{\cos(2x)}{\sin(2x)}\cdot 2\ dx

Let,

\longrightarrow u=2x

\displaystyle\longrightarrow du=2\ dx

Then the integral becomes,

\displaystyle\longrightarrow I=-\int\dfrac{\cos u}{\sin u}\ du

Since \cos u is the derivative of \sin u wrt u,

\displaystyle\longrightarrow I=-\ln|\sin u|+C

\displaystyle\longrightarrow\underline{\underline{I=-\ln|\sin(2x)|+C}}

Or,

\displaystyle\longrightarrow\underline{\underline{I=\ln|\csc(2x)|+C}}

Similar questions