Math, asked by komal1654, 1 year ago

find integration cos^2 x/2​

Answers

Answered by Swarup1998
15
\underline{\texttt{Solution :}}

\mathrm{Now,\:\int cos^{2}\frac{x}{2}\:dx}

\mathrm{=\frac{1}{2} \int 2\:cos^{2}\frac{x}{2}\:dx}

\mathrm{=\frac{1}{2} \int (1+cosx)\:dx}

\mathrm{=\frac{1}{2}\int dx+\frac{1}{2}\int cosx\:dx}

\mathrm{=\frac{1}{2}x+\frac{1}{2}sinx+C}

\texttt{where C is integral constant}

\to \boxed{\mathrm{\int cos^{2}\frac{x}{2}\:dx=\frac{1}{2}x+\frac{1}{2}sinx+C}}

\texttt{which is the required integral}

\underline{\texttt{Mathematical Deduction :}}

\mathrm{cosx=cos(\frac{x}{2}+\frac{x}{2})}

\mathrm{=cos\frac{x}{2}\:cos\frac{x}{2}-sin\frac{x}{2}\:sin\frac{x}{2}}

\mathrm{=cos^{2}\frac{x}{2}-sin^{2}\frac{x}{2}}

\mathrm{=cos^{2}\frac{x}{2}-(1-cos^{2}\frac{x}{2})}

\boxed{\mathrm{since,\:sin^{2}\frac{x}{2}+cos^{2}\frac{x}{2}=1}}

\mathrm{=cos^{2}\frac{x}{2}-1+cos^{2}\frac{x}{2}}

\mathrm{=2\:cos^{2}\frac{x}{2}-1}

\to \mathrm{2\:cos^{2}\frac{x}{2}=1+cosx}

Swarup1998: :)
generalRd: ^_^
Swarup1998: :)
Similar questions