Math, asked by rsri0255, 4 months ago

find k. 9x²+8kx+16=0 has two equal real roots​

Answers

Answered by radhikachanaliya4139
1

Answer:

Answer is 6√3

Step-by-step explanation:

We know that two. equal root has

-4ac=0

therefore a= 9,b=8k , c=16

(8k)²-4(9)(16)=0

8k²-576=0

8k²=576

=576/8

=72

k= 63

itz helpful or not comment plz

Answered by taqueerizwan2006
1

Step-by-step explanation:

given \\  \\f(x)  \colon\rightarrow(k + 4)x {}^{2}  + (k + 1) + 1 = 0 \\here \:  \:  in \:  \: f(x) \:  \: a = (k + 4) \: and\: \:  b = (k + 1) \: and \: \: c = 1   \\ let \:  \: the \:  \: roots \:  \: be \:  \:  \beta  \\ formula \:  \: to \:  \: be \:  \:  \: applied \\   \beta  =  \frac{ - b  \: ± \:   \sqrt{b {}^{2} - 4ac }}{2a}  \\ now \\  \frac{ \cancel{ - b} \:  + \:   \sqrt{b {}^{2}  - 4ac}  }{ \cancel{2a}}  =  \frac{ \cancel{ - b} -  \sqrt{b {}^{2} - 4ac } } {\cancel{2a} } \\ 2 \sqrt{b {}^{2} - 4ac }  = 0 \\ 4(b {}^{2}  - 4ac) = 0 \\ b {}^{2}  = 4ac \\ (k + 1) {}^{2}  = 4(k + 4)(1) \\ k {}^{2}  + 1 + 2k = 4k + 16 \\ k {}^{2}  - 2k - 15 = 0 \\ k { }^{2}  - 5k + 3k - 15 = 0 \\ k(k - 5) + 3(k - 15) = 0 \\ (k + 3)(k - 1) = 0 \\ k = 1 \:  \: and \:  \:  - 3 \:  \:  \: Ans

Similar questions