Find k value if f(x)=(x-k)^4 is minimum when x=3
Answers
Answered by
2
the answer is in the above picture
hope my answer helps you
if you like it mark me as BRAINLIEST
hope my answer helps you
if you like it mark me as BRAINLIEST
Attachments:
Answered by
0
The value of k = 3.
Given:
- Function f(x) = (x - k)⁴
- Function is minimum at x = 3
To find: Value of k.
Step by step explanation:
→ Basic Identities used
- (a - b)² = a² + b² - 2ab
- (a - b) (a - b) = (a - b)²
- (a - b)⁴ = (a - b)² * (a - b)²
We know that the function is minimum at x = 3.
So, substituting the value of x = 3 in the function and solving it.
⇒ f(x) = (x - k)⁴
⇒ f(3) = (3 - k)⁴
⇒ 0 = (3 - k)² * (3 - k)²
⇒ [(3)² + (k)² - 2*3*k] * [(3)² + (k)² - 2*3*k] = 0
⇒ (9 + k² - 6k) * (9 + k² - 6k) = 0
⇒ (9 + k² - 6k) = 0
(9 + k² - 6k)
⇒ (9 + k² - 6k) = 0
⇒ k² - 6k + 9 = 0
⇒ k² - 3k - 3k + 9 = 0
⇒ k (k - 3) - 3 (k - 3) = 0
⇒ (k - 3) * (k - 3) = 0
⇒ k - 3 = 0
( k - 3 )
⇒ k - 3 = 0
⇒ k = 3
∴ The value of k = 3.
#SPJ2
Similar questions