Math, asked by Anonymous, 4 months ago

Find m + n :
 \displaystyle \sf \int \:  \dfrac{ {x}^{2009} }{(1 +  {x}^{2})  {}^{1106} } dx =  \dfrac{1}{m}  \bigg(  \dfrac{ {x}^{2} }{1 +  {x}^{2} } \bigg) {}^{n}
Grade 12
Integration ​

Answers

Answered by Rajshuklakld
10

So,m+n=1005+2010

=3015

DM me ,if u have any doubt in my solution..

Attachments:
Answered by Asterinn
31

Correct question :

\displaystyle \sf \int \: \dfrac{ {x}^{2009} }{(1 + {x}^{2}) {}^{1006} } dx = \dfrac{1}{m} \bigg( \dfrac{ {x}^{2} }{1 + {x}^{2} } \bigg) {}^{n} + c

Solution :

 \sf \rightarrow\displaystyle \sf \int \: \dfrac{ {x}^{2009} }{(1 + {x}^{2}) {}^{1006} } dx = \displaystyle \sf \int \dfrac{ {x}^{2009} }{ {x}^{2012} (1 +  \frac{1}{ {x}^{2} } ) {}^{1006} } dx \\  \\ \\   \rightarrow \displaystyle \sf \int \dfrac{ 1}{ {x}^{3} (1 +  \frac{1}{ {x}^{2} } ) {}^{1006} } dx

\rightarrow   \sf let  \:  \:  \: 1 +  \dfrac{1}{ {x}^{2}} = t \\  \\\rightarrow \sf \frac{ - 2}{ {x}^{3} } dx=dt \\  \\  \boxed{ \rightarrow \sf \frac{ 1}{ {x}^{3} } dx= \dfrac{ - 1}{2} dt} \\ \\  \\ \rightarrow \displaystyle \sf \int \dfrac{  - dt}{ 2(t) {}^{1006} } \\  \\ \\  \rightarrow  - \displaystyle \sf \int \dfrac{ (t) {}^{ - 1006} dt}{ 2} \\  \\  \\ \rightarrow  -  \sf \dfrac{ (t) {}^{ - 1005} }{ 2 \times ( - 1005)}  + c\\  \\ \rightarrow  \sf \dfrac{ 1 }{ 2010 \times (t) {}^{  1005}}  + c \\  \\ \\  \sf now \: put \: t \:  = 1 +  \frac{1}{ {x}^{2}} \\  \\ \rightarrow  \sf \dfrac{ 1 }{ 2010 \times (1 +  \frac{1}{ {x}^{2}}) {}^{  1005}} + c \\  \\ \rightarrow  \sf  \frac{1}{201 0}  \times \dfrac{ 1 }{  ( \frac{ {x}^{2} + 1 }{ {x}^{2}}) {}^{  1005}} + c \\  \\  \\ \rightarrow  \sf  \frac{1}{201 0}  \times  \bigg(  {\frac{ {x}^{2} }{ {x}^{2} + 1 } } \bigg)^{1005}  + c

Therefore , m = 2010 and n = 1005

=> m+n = 2010+1005

=> m+n = 3015

Similar questions