Math, asked by sagarthakur1, 9 months ago

find modulus and argument of Z =2 root3-2i​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{z=2\sqrt{3}-2\,i}

\textbf{To find:}

\textsf{Modulus and argument of z}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{8cm}$\\\textsf{The modulus of the complex number z=x+i y is}\\\\\mathsf{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;|z|=\sqrt{x^2+y^2}}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{z=2\sqrt{3}-2\,i}

\implies\mathsf{x=2\sqrt{3}\;\;\&\;\;y=-2}

\implies\textsf{argz lies in fourth quadrant}

\mathsf{Then,}

\mathsf{|z|=\sqrt{x^2+y^2}}

\mathsf{|z|=\sqrt{(2\sqrt{3})^2+(-2)^2}}

\mathsf{|z|=\sqrt{12+4}}

\mathsf{|z|=\sqrt{16}}

\implies\boxed{\mathsf{|z|=4}}

\mathsf{\alpha=tan^{-1}\dfrac{|y|}{|x|}}

\mathsf{\alpha=tan^{-1}\dfrac{|-2|}{|2\sqrt{3}|}}

\mathsf{\alpha=tan^{-1}\dfrac{2}{2\sqrt{3}}}

\mathsf{\alpha=tan^{-1}\dfrac{1}{\sqrt{3}}}

\mathsf{\alpha=\dfrac{\pi}{6}}}

\textsf{Since argz lies in fourth quadrant, we have}

\mathsf{arg\,z=-\alpha}

\implies\boxed{\mathsf{arg\,z=\dfrac{-\pi}{6}}}

\textbf{Find more:}

Find the modulus of 15-7i÷15+7i​

https://brainly.in/question/23616578

If z=√37 + √-19 Find |Z|​

https://brainly.in/question/22099402

Similar questions