Math, asked by begeinner, 1 year ago

find square root -6-8i​

Answers

Answered by Anonymous
3

 \red{ \large \sf \underline{ \underline{ \: Given : \:  \:  \: }}}

 \star \:  \sf Complex  \: number \:  z = -6 - 8i \\  \\\star \:  \sf   Real \:  part \:  Re_{(z)} =  -  6  \\ \\   \star \:  \sf Imaginary \:  part \:   Im_{(z)} = -  8 < 0  \\  \\ \star \:    \sf Modulus  \: of  \:  z \: ( |z| ) =  \sqrt{ {(a)}^{2} +  {(b)}^{2}  }

  =  \sqrt{ {( - 6)}^{2}  +  {( - 8)}^{2} }  \\  \\  =  \sqrt{36 + 64}  \\  \\  =  \sqrt{100}  \\  \\  = 10

Now ,

We know that , the square root of complex number (z) , if imaginary part is less than zero is given by :

\large \sf\fbox{ \fbox{ \sqrt{z}  = ±  \sqrt{ \frac{ |z|  + Re_{(z)}}{2} }  - i \sqrt{ \frac{ |z|  - Re_{(z)}}{2} } \:  \:  \:  \:  }}

So ,

 \sf = ± \sqrt{ \frac{10 + ( - 6)}{2} }  - i \sqrt{ \frac{10 - ( - 6)}{2} }  \\  \\ \sf  = ± \sqrt{ \frac{10 - 6}{2} }  - i \sqrt{ \frac{10 + 6}{2} }  \\  \\ = \sf  ± \sqrt{ \frac{4}{2} }  - i \sqrt{ \frac{16}{2} }  \\  \\\sf   =  ± \sqrt{2}  - i \sqrt{8}

Hence ,  \sf± \sqrt{2}  - i \sqrt{8} is the square root of  \sf  - 6 - 8i

Similar questions