Math, asked by naeemchaudhary035, 3 months ago

Find the area of a field in the shape of a trapezium whose parallel sides are of lengths
48 m and 160 m and non-parallel sides of lengths 50 m and 78m.
.
.
.
.
solve the question step by step​

Answers

Answered by 12thpáìn
276

\underline{\sf{\green{ Question}}}

  • Find the area of a field in the shape of a trapezium whose parallel sides are of lengths 48 m and 160 m and non -parallel sides of lengths 50 m and 78m.

\underline{\sf{\green{Step\ by\ step\ Explanation}}}

Given

  • PQRS is a trapezium
  • Parallel sides = lengths 48 m and 160 m
  • Non - parallel sides= lengths 50 m and 78m

To Find

  • Area Of Field

Construction

  • QA||PS
  • PQ||SA

Opposite side are equal

Therefore PQAS Is a parallelogram

Now in parallelogram PQAS

PS=QA=50m

PQ=SA=48m

Now,

  • AR=SR-SA
  • AR=100m-48m
  • AR=52m

Now in triangle AQR

  • AQ=50m
  • AR=52m
  • QR=72m

\sf{Semi- perimeter= \cfrac{Sum\ of\ all\ sides}{2}}

\sf{Semi- perimeter= \cfrac{50+78+52}{2}}

\sf{Semi- perimeter= \cfrac{180}{2}}

\sf{Semi- perimeter= 90}\\\\

By using Heron's formula

\pink{\sf Area\ of\ triangle\ AQR= \sqrt{S(S-A)(S-B)(S-C)}}

S= Semi-perimeter

A,B and C are the sides of triangle AQR

Here A=50m , B= 52m and C=78m

\sf Area\ of\ triangle\ AQR= \sqrt{90(90-50)(90-52)(90-78)}

\sf Area\ of\ triangle\ AQR= \sqrt{90×40×38×12}

\sf Area\ of\ triangle\ AQR= \sqrt{90×18240}

\sf Area\ of\ triangle\ AQR= \sqrt{1641600}

\sf Area\ of\ triangle\ AQR= 1281cm\\\\

Now

\sf Area of triangle AQR= 1/2 base × height

\sf 1281=1/2×52×Height

\sf Height=1281×2/52

\sf Height=2562/52

\sf ~~~Height=49 m

\\\\\sf{Area\ of\ parallelogram\ PQRS = 1/2 Sum\ of\ parallelogram\ Side× Height}

\sf{Area\ of\ parallelogram\ PQRS = 1/2 (100+48)× 49}

\sf{Area\ of\ parallelogram\ PQRS = 1/2 ×148× 49}

\sf{Area\ of\ parallelogram\ PQRS = 74× 49}

\sf{\red{Area\ of\ parallelogram\ PQRS = 3626m²}}

Attachments:
Similar questions