Math, asked by chandana2074, 1 year ago

Find the area of a rectangle whose vertices are
A (-2, 6), B (5, 3), C (-1,-11) and D (-8,-8)

first will be marked as the brainliest​

Answers

Answered by Anonymous
5

ANSWER:-

Given:

Find the area of a rectangle whose vertices are A(-2,6), B(5,3), C(-1,-11)&

D(-8,-8).

SOLUTION:

Let the vertices of quadrilateral ABCD be;

⏺️A(-2,6)

⏺️B(5,3)

⏺️C(-1,-11)

⏺️D(-8,-8)

Therefore,

AB² = [5-(-2)]² + (3-6)²

AB² = (5+2)² + (-3)²

AB² = (7)² + (-3)²

AB² = 49 + 9

AB² = 58

AB = √58

&

BC² = (-1-5)² + (-11-3)²

BC² = (-6)² + (-14)²

BC² = 36 + 196

BC² = 232

BC = √232

&

CD² = (-8+1)² +(-8+11)²

CD² = (-7)² + (3)²

CD² = 49 + 9

CD² = 58

CD √58

&

AD² = (-8+2)² + (-8-6)²

AD² = (-6)² + (-14)²

AD² = 36 + 196

AD² = 232

AD = √232

Therefore,

AB =CD=√58 units & BC= AD= √232 units

So,

AC² = (-1+2)² +(-11-6)²

AC² = (1)² + (-17)²

AC² = 1 + 289

AC² = 290

AC = √290

&

BD² = (-8-5)² + (-8-3)²

BD² = (-13)² + (-11)²

BD² = 169 + 121

BD² = 290

BD = √290

So,

Diagonal AC= diagonal BD.

Hence,

ABCD is a quadrilateral whose opposite sides and diagonals are equal. So, quadrilateral. &

ABCD is a rectangle.

Hope it helps ☺️

Similar questions