Math, asked by butIAlways, 4 months ago

Find the area of a right triangle with hypotenuse 10 cm and base 6cm.​

Answers

Answered by Anonymous
86

Solution..

by using Pythagoras theorem

\tt \pink{ {CB}^{2} = {AB}^{2} + {AC}^{2}}

AB = 6 cm

CB = 10 cm

AC = ?

\tt{ ={CB}^{2} = {AB}^{2} + {AC}^{2}}

\tt {= {10}^{2} = {6}^{2} + {AC}^{2}}

\tt{= 100 = 36 + {AC}^{2} }

\tt {= {AC}^{2} = 100 - 36 }

\tt {= {AC}^{2} = 64}

\tt {= AC = \sqrt{64}}

\tt {= AC = 8 }

Area of triangle = \tt { \frac{1}{2} × Base × height }

\tt {= \frac{1}{2} × 6 × 8}

\tt {= \frac {48}{2}}

\tt {= {24cm}^{2}}

Answered by Anonymous
0

Solution..

by using Pythagoras theorem

\tt \pink{ {CB}^{2} = {AB}^{2} + {AC}^{2}}

AB = 6 cm

CB = 10 cm

AC = ?

\tt{ ={CB}^{2} = {AB}^{2} + {AC}^{2}}

\tt {= {10}^{2} = {6}^{2} + {AC}^{2}}

\tt{= 100 = 36 + {AC}^{2} }

\tt {= {AC}^{2} = 100 - 36 }

\tt {= {AC}^{2} = 64}

\tt {= AC = \sqrt{64}}

\tt {= AC = 8 }

Area of triangle = \tt { \frac{1}{2} × Base × height }

\tt {= \frac{1}{2} × 6 × 8}

\tt {= \frac {48}{2}}

\tt {= {24cm}^{2}}

Similar questions