find the area of a triangle whose sides are respectively 150 cm 120 cm and 200 CM
Answers
Answered by
5
Three sides of the triangle are
a=150 cm
b= 120 cm
c=200
Semiperimeter, S=(a+b+c)/2=(150+120+200)/2 =235 cm
Hence area of hte tringle( Using Hero's Formula )= √{S(S−a)(S−b)(S−c)}
=√{235(235−150)(235−120)(235−200)}
=√{235(85)(115)(35)}=8966.57 cm²
a=150 cm
b= 120 cm
c=200
Semiperimeter, S=(a+b+c)/2=(150+120+200)/2 =235 cm
Hence area of hte tringle( Using Hero's Formula )= √{S(S−a)(S−b)(S−c)}
=√{235(235−150)(235−120)(235−200)}
=√{235(85)(115)(35)}=8966.57 cm²
Answered by
4
Assumption,
Sides of the triangle :-
p = 150 cm
q = 120 cm
r = 200 cm
As we know that :-
Semi Perimeter :-
s = (p + q + r)/2
s = (150 + 120 + 200)/2
s = 470/2
s = 235 cm
Now,
Using Heron formula :-
A = √s(s - a)(s - b)(s - c)
A = √235(235 - 150)(235 - 120)(235 - 200)
A = √235 × 85 × 115 × 35
A = √(47 × 5) × (17 × 5) × (23 × 5) × (5 × 7)
A = √(5 × 5 × 5 × 5) × 47 × 17 × 23 × 7
A = 25√47 × 17 × 23 × 7
A = 25 √128639
A = 25 × 358.663
A = 8966.56 cm²
Therefore,
A of triangle = 8966.56 cm²
Similar questions
Chemistry,
7 months ago
Business Studies,
7 months ago
Math,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago
Math,
1 year ago