Math, asked by gmayank2004pd550r, 1 year ago

find the area of a triangle whose sides are respectively 150 cm 120 cm and 200 CM

Answers

Answered by maya51
5
Three sides of the triangle are 
a=150 cm 
b= 120 cm 
c=200 
Semiperimeter, S=(a+b+c)/2=(150+120+200)/2 =235 cm 
Hence area of hte tringle( Using Hero's Formula )= √{S(S−a)(S−b)(S−c)} 
=√{235(235−150)(235−120)(235−200)} 
=√{235(85)(115)(35)}=8966.57 cm²
Answered by Anonymous
4

\Large{\textbf{\underline{\underline{According\;to\;the\;Question}}}}

Assumption,

Sides of the triangle :-

p = 150 cm

q = 120 cm

r = 200 cm

As we know that :-

Semi Perimeter :-

s = (p + q + r)/2

s = (150 + 120 + 200)/2

s = 470/2

s = 235 cm

Now,

Using Heron formula :-

A = √s(s - a)(s - b)(s - c)

A = √235(235 - 150)(235 - 120)(235 - 200)

A = √235 × 85 × 115 × 35

A = √(47 × 5) × (17 × 5) × (23 × 5) × (5 × 7)

A = √(5 × 5 × 5 × 5) × 47 × 17 × 23 × 7

A = 25√47 × 17 × 23 × 7

A = 25 √128639

A = 25 × 358.663

A = 8966.56 cm²

Therefore,

A of triangle = 8966.56 cm²

Similar questions