find the area of parallelogram ABCD in which BC= 12 cm ,CD = 17 cm Also find the length of altitude AE from vertex A on the side BC.
Answers
Answered by
3
Answer:
Weknowthatthediagonalofaparallelogram(∥
gm
)dividesitintotwocongruenttriangles.
SoAreaof∥
gm
ABCD=2×Areaof△BCD.
AccordingtoHeron
′
sformulathearea(A)oftrianglewithsidesa,b&cisgivenas
A=
2
[s(s−a)(s−b)(s−c)]
where2s=(a+b+c).
Herea=12,b=17,c=25,s=
2
(12+17+25)
=
2
54
=27
Areaof∥
gm
ABCD
=2×
2
[27×(27−12)(27−17)(27−25)]
=2×
2
(27×15×10×2)
=2×
2
(3×3×3×3×5×5×2×2)
=2×
2
[(3×3×5×2)(3×3×5×2)]
=2×(3×3×5×2)
=2×90
=180
Areaof∥
gm
=base×height
HeightofaltitudefromvertexAonsideCDoftheof∥
gm
=
baseCD
areaof∥
gm
ABCD
=
12
180
=15cm
you just change your values
Step-by-step explanation:
Mark it as brainliest
Similar questions