Math, asked by hollo3178, 10 months ago

Find the area of rhombus each side of whichmeasures20 cm and one of whose diagnols is 24 cm

Answers

Answered by Anonymous
6

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Each side of rhombus is 20cm

  • Diagonal is 24 cm

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Area of rhombus.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Properties of rhombus.

 \:\:

⚝ All the properties of a parallelogram apply (the ones that matter here are parallel sides, opposite angles are congruent, and consecutive angles are supplementary).

 \:\:

⚝ All sides are congruent by definition.

 \:\:

⚝ The diagonals bisect the angles.

 \:\:

⚝ The diagonals are perpendicular bisectors of each other.

 \:\:

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,0){\line(1,1){12}}\put(20,0){\line(1,1){12}}\put(0,0){\line(1,0){20}}\end{picture}\put(6.9,12){\line(1,0){20}}\put(15,0){\line(-2,3){8}}\put(5,3){}\put(4.5,-2){}\put(11,7.5){24 cm}

 \:\:

Let ABCD be a rhombus.

BD & AC be the diagonals of the rhombus.

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

AB = BC = CD = DA = 20cm

 \:\:

BD = 24cm

 \:\:

Let the diagonals bisect each other at 'E'

 \:\:

Hence BE = 12cm

 \:\:

As the diagonals of rhombus are perpendicular bisectors of each other.

 \:\:

 \underline{\bold{\texttt{By pythagoras theorem}}}

 \:\:

BE² + AE² = AB²

 \:\:

 \sf \longmapsto 12^2 + AE^2 = 20^2

 \:\:

 \sf \longmapsto 144 + AE^2 = 400

 \:\:

 \sf \longmapsto AE^2 = 256

 \:\:

 \sf \longmapsto AE = \sqrt {256}

 \:\:

 \sf \longmapsto AE = 16cm -------(1)

 \:\:

 \sf \dashrightarrow AC = 2 \times AE

 \:\:

\purple\longrightarrow  \sf AC = 32cm --------(2)

 \:\:

 \underline{\bold{\texttt{Area of rhombus:}}}

 \:\:

\red\longrightarrow  \bf \dfrac { 1 } { 2 } diagonal 1 \times diagonal 2

 \:\:

diagonal 1 = 24 cm [Given]

diagonal 2 = 32 cm [From (1) & (2)]

 \:\:

 \sf\dfrac { 1 } { 2 } \times24 \times 32

 \:\:

 \bf \dashrightarrow Area = 384 sq cm

\rule{200}5

Answered by nidhirandhawa7
0

Step-by-step explanation:

pls make it brainlest answer

Attachments:
Similar questions