Math, asked by madhivakuvindiansmul, 1 year ago

find the area of sector whose radius is 7 cm and angle subtended by it at centre is 60

Answers

Answered by EswerSaran
5
Area of sector=(Ф/360)*π*r^2
                      =(60/360)*22/7*7*7
                      =154/6
                      =25.67(approx.)   
  
Answered by Anonymous
7

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

______________________________

Given :

Angle of sector (\sf{\theta)} = 60°

Radius (r) = 7 cm

______________________________

To Find :

We have to find the area of the sector.

_______________________________

Solution :

We know the formula to find the area of the sector.

\large{\boxed{\boxed{\sf{Area = \frac{\theta}{360^{\circ}} \pi r^2}}}} \\ \\ \small{\gray{\underline{\sf{\dag \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Put \: Values \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \dag}}}} \\ \\ \sf{\implies Area = \frac{\cancel{60}}{\cancel{360}} \times \frac{22}{7} \times 7 \times 7} \\ \\ \sf{\implies Area = \frac{1}{\cancel{6}} \times \frac{\cancel{22}}{\cancel{7}} \times \cancel{7} \times 7} \\ \\ \sf{\implies Area = \frac{11}{3} \times 7} \\ \\ \sf{\implies Area = \frac{77}{3}} \\ \\ \sf{\implies Area = 25.67} \\ \\ \sf{\therefore \: Area \: of \: sector \: is \: 25.67 \: cm^2.}

Similar questions