Math, asked by Anonymous, 5 months ago

Find the area of shaded region​

Attachments:

Anonymous: DM please

Answers

Answered by CloseEncounter
38

Question

In the given figure, △ABC is right-angled at A. Semi circles are drawn on AB,AC and BC as diameters. It is given that AB=3 cm and AC=4 cm. Find the area of the shaded region in cm².

\sf{Answer:→ \red{6cm²}}

\sf \green{{Step\ by\ step\ explaination}}

Given that,

  • ABC is a right angle triangle
  • ∠A=90°
  • AB = 3cm
  • AC= 4cm

we need to find area of shaded region

Now In ∆ Abc And ∠A 90°

\tt{By\ Pythagoras\ theorem \ = \red{h²=b²+ p²}}

\tt{→(BC)²=(AB)²+(AC)²}

\tt{→(BC)²=(3)²+(4)²}

\tt{→(BC)²=9+16}

\tt{→BC= \ sqrt{25}}

\tt{→BC= 5cm}

  • radius of semicircle AB= 3/2
  • radius of semicircle AC=4/2= 2
  • radius of semicircle BAC =5/2

\tt{Area\ of\ shadded\  region \ = \red{Area\ of \ △ ABC)}+ \blue{(Area\ of\ semicircle\  AB)} + \red{(Area\ of\ semicircle\  AC)}-\pink{ (Area\ of\  semicircle\ BAC)}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \   = \red{\dfrac{1}{2} (base \times height)}+ \pink{(\dfrac{1}{2} \pi r²)} + \blue{(\dfrac{1}{2} \pi r²)}-\pink{ (\dfrac{1}{2} \pi r²)}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \   = \red{\dfrac{1}{2}( 3 \times 4)}+ \green{(\dfrac{1}{2} \pi (3/2)²)} + \green{(\dfrac{1}{2} \pi \times  2²)}-\pink{ (\dfrac{1}{2} \pi (5/2)²))}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \   = \red{6}+ \dfrac{1}{2} \pi( \green{(\dfrac{3}{2})²} + \blue{4}-\pink{(\dfrac{5}{2})²}) \ \ \ \  taking \dfrac{1}{2} π\  comman}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \   = \red{6}+ \dfrac{1}{2} \pi \blue{(\dfrac{9}{4} + \blue{4}-\pink{\dfrac{25}{4})}}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  = \red{6}+ \dfrac{1}{2} \pi  \dfrac{(9+16-25)}{4}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  = \red{6}+ \dfrac{1}{2} \pi ( \dfrac{0}{4})}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  = \red{6}+ \dfrac{22 \times 0}{ 2 \times 7 \times 4}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  = \red{6}+ \dfrac{ 0}{ 56}}

\tt{ \ \ \  \ \  \ \  \ \  \ \  \ \  \ \  \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  \ \  = \red{6}+ 0}

\tt{Area\ of\ shadded\  region \ = \red{6cm²}}

Similar questions