Math, asked by chethahappy, 10 months ago

find the area of shaded region in the given circle of radius 6cm and sector angle 70degree as in the figure​

Answers

Answered by Anonymous
7

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\tt Given \begin{cases} \sf{Radius \: of \: the \: circle \: is \: 6 \: cm}  \\  \sf{Angle \: of \: the \: sector \: is \: 70^{\circ} }  \end{cases}

_____________________________

To Find :

The area of the sector.

_____________________________

Solution :

As, we have to find the area of sector.

We know that,

\Large{\star{\underline{\boxed{\sf{Area \: of \: sector = \frac{\theta}{360}\pi r^2}}}}}

(Putting Values)

 \sf{area =  \frac{70}{360}( \frac{22}{7} \times ( {6)}^{2} )  } \\  \\  \sf{area =  \frac{70}{360}( \frac{22}{7}  \times 36) } \\  \\  \sf{area =  \frac{70}{360}( \frac{792}{7})} \\  \\  \sf{area =  \frac{55440}{2520} } \\  \\  \sf{area = 22 \:  {cm}^{2} }

\large{\star{\underline{\boxed{\sf{Area = 22 \: cm^2}}}}}

\rule{200}{2}

Additional information :

In the question theta can't be negative or greater than 360°.

The area of the sector will be smaller than the area of circle.

\rule{200}{2}

#answerwithquality

#BAL

Similar questions