Math, asked by 9971sakshiguptaa, 1 month ago

Find the area of the region excluding ∆ ABD by herons formula..please help​

Attachments:

Answers

Answered by kamalhajare543
15

Answer:

Area of shaded region = area of ∆ABC - area of ∆ADB.

_____________

Find area of triange ADB:

∆ADB is a right angle triangle.

In ∆ADB,

AD = 12 cm

BD = 16 cm

 \sf \: Ar(∆ADB) =  \frac{1}{2} × base × height

 \sf=> Ar(∆ADB) =  \frac{1}{2}  × AD × BD

 \sf=> Ar(∆ADB) =  \frac{1}{2}  × 12 × 16

 \sf=> Ar(∆ADB) = 96 cm^2

____________________

Find area of triange ABC

you can find AB by using Pythagoras theorem.

\begin{gathered} {AB}^{2} = {AD}^{2} +{ BD}^{2} \\ \\ {AB}^{2} = {12}^{2} + {16}^{2} \\ \\ {AB}^{2} = 144 + 256 = 400 \\ \\ AB = \sqrt{400} \\ \\ AB = 20 \: cm\end{gathered}

The sides of the triangle are 48cm, 52cm and 20cm.

   \sf\begin{gathered}s = \frac{48 + 52 + 20}{2} = \frac{120}{2} = 60 \: cm \\ \end{gathered}

 \sf{Area  \: of  \: triangle  \: ABC} = \sqrt{s(s - a)(s - b)(s - c)}

 \sf = \sqrt{60 \times (60 - 52)(60 - 48)(60 - 20) }

\begin{gathered}= \sqrt{60 \times 8 \times 12 \times 40} \\ \\ = \sqrt{230400} \\ \\ = 480 \: {cm}^{2}\end{gathered}

_______________________

Area of shaded region = area of ∆ABC - area of ∆ADB.

 \sf \: => Area \:  of  \: shaded \:  region = 480 - 96

 \sf=> Area \:  of \:  shaded \:  region = 384 cm^2

Hence This is Answer

Similar questions