Math, asked by dharshini1691, 5 months ago

find the area of the sectors. whose of the leagth of the arc=48m,r=10 step by step ​

Answers

Answered by av1266108
2

answer

Length=48m.

Radius =10m.

circumference =2π(10)=10πm. Find the area:

Area = π(10)^2=100πm^2. Find the area of the sector:

Arc Length = 48m. Area of the sector = ( arc length / Circumference ) x Area.

Area of the sector =(48m/10πm)×100πm^2.

=480m^2. Hence the area of sector is 480m^2.

Answered by MrAnonymous412
20

Question :-

find the area of the sectors. whose of the leagth of the arc=48m,r=10 .

Answer :-

\longrightarrow 240 cm².

Given :-

✪ Length of the arc = 48 cm

Radius = 10 cm .

Formula :-

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \color{orange} \underline{ \boxed{\sf \: Area \: of \: sector \:  =  \:  \frac{1}{2}  \times length \times radius \:  \:  \:  \:  \:  \:  }}\\

SoluTíon :-

Now , put the values in given formula,

  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \:  \:  \longrightarrow \:  \:  \:  \rm{ \frac{1}{2} \times 10 \times 48 }\\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     : \:  \:  \longrightarrow \:  \:  \:  \rm{ \frac{1}{ \cancel2} \times 10 \times  \cancel{48 }}\\

  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \: : \:  \:  \longrightarrow \:  \:  \:  \rm{   10 \times 24  }\\

  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  :   \longrightarrow \:  \:  \:   \  \pink{\boxed{ \frak{ \: a \:  = \rm{   240 }}}}\\

 \therefore \: \:  \:  \: \textbf{the \: area \: of \: sector \: is \:   \color{lime}{\underline{240cm ²}}}

Note :-

✪ Learn the formulae related to this question .

Thank you !

Similar questions