Math, asked by ramu2489, 6 months ago

find the area of triangle ......​

Attachments:

Answers

Answered by itxddd127
0

Answer:

200 cm³

Step-by-step explanation:

Answered by ƦαíηвσωStαƦ
8

\huge{\purple{\underline{\underline{\bf{\pink{Solution:-}}}}}}

\bullet\;\;\underline{\textbf{\textsf{AnswEr:-}}}

  • Area of the triangle = 100 \sf {\sqrt{3}\:cm^2}

\bullet\;\;\underline{\textbf{\textsf{Given:-}}}

  • The given side is 20 cm.

\bullet\;\;\underline{\textbf{\textsf{Need To Find:-}}}

  • The area of triangle = ?

\:\:\:\:\;\:\;\footnotesize\bold{\underline{\underline{\sf{\red{Step\:by\:step\: Explanation:-}}}}}

\bullet\;\;\underline{\textbf{\textsf{Formula used here:-}}}

{\underline{\boxed{\sf{Area \: of \: equilateral \: triangle = \dfrac{\sqrt{3}}{4}\: a^2}}}}\\\\

\bullet\;\;\underline{\textbf{\textsf{Putting the values:-}}}

\longrightarrow \sf {Area \: of \: equilateral \: triangle = \dfrac{\sqrt{3}}{4}\: 20^2}\\\\

\longrightarrow \sf {Area \: of \: equilateral \: triangle = \dfrac{\sqrt{3}}{4}\: 400}\\\\

\longrightarrow \sf {Area \: of \: equilateral \: triangle = \sqrt{3} \times 100}\\\\

\longrightarrow \sf {Area \: of \: equilateral \: triangle = 100 \: \sqrt{3}\:cm^2}\\\\

\bullet\;\;\underline{\textbf{\textsf{Therefore:-}}}

  • Area of the triangle = 100 \sf {\sqrt{3}\:cm^2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions