Math, asked by rohitsalve8021, 8 months ago

Find the area of triangle abc with vertices a(0,-1), b(2,1) and c(0,3). also, find the area of triangle formed by joining midpoints of its sides. show that the ratio of area of two triangle id 4:1 .

Answers

Answered by Ataraxia
2

Distance between the points a and b = √(2-0)²+(1-(-1))²

                                                         = √2²+2²

                                                         = √8 = 2√2

Distance between the points b and c = √(2-0)²+(1-3)²

                                                         = √2²+2²

                                                         = √8 = 2√2

Distance between the points a and c = | 3-(-1) |

                                                         = 4

Area of triangle = 1/2 | x1(y2-y3)+x2(y3-y1)+x3(y1-y2) |

                        = 1/2 | 0(1-3)+2(3+1)+0(-1-1)

                        = 1/2 |8|

                        = 4

Let P,Q and R mid points of side AB, BC and AC

Coordinates of P = (1,0) {using the formulae of midpoint }

Coordinates of Q = (1,2)

Coordinates of R = (0,1)

The area of triangle PQR = 1/2 | 1(2-1)+1(1-0)+0(0-2) |

                                       = 1/2 | 2 |

                                       = 1

Ratio of area of triangle ABC to the area of triangle PQR = 4:1

Hope it helps u...........................

Answered by najafathima
1

Answer:

hope it helps u........

Attachments:
Similar questions