find the area of triangle S(-6,-2),I(-8,-5) and M(-4,-5)
Answers
Answered by
1
Area of Δ when coordinates are given is
given S(-6 , -2)
I(-8 ,-5)
M(-4,-5)
x1 = -6, x2 = -8, x3 = -4
y1 = -2, y2 = -5, y3 = -5
Δ = 1/2[(x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)]
= 1/2 { -6[-5 -(-5)] + (-8)[ -5 -(-2)] + (-4)[ -2 -(-5)]}
= 1/2 { -6(-5+5) +(-8)[-5+2] + (-4)[ -2+5]}
= 1/2 { -6(0) + (-8)[-3] +(-4)[3]}
= 1/2 { 0 +(24) + (-12)}
= 1/2 {24-12}
= 1/2 { 12 }
= 12/2
= 6
∴ Area of the Δ = 6 units²
given S(-6 , -2)
I(-8 ,-5)
M(-4,-5)
x1 = -6, x2 = -8, x3 = -4
y1 = -2, y2 = -5, y3 = -5
Δ = 1/2[(x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)]
= 1/2 { -6[-5 -(-5)] + (-8)[ -5 -(-2)] + (-4)[ -2 -(-5)]}
= 1/2 { -6(-5+5) +(-8)[-5+2] + (-4)[ -2+5]}
= 1/2 { -6(0) + (-8)[-3] +(-4)[3]}
= 1/2 { 0 +(24) + (-12)}
= 1/2 {24-12}
= 1/2 { 12 }
= 12/2
= 6
∴ Area of the Δ = 6 units²
yasummu:
mark as brainliest if useful
Similar questions
Hindi,
8 months ago
Math,
8 months ago
Hindi,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago