Math, asked by lakshyakrishna334, 4 months ago

find the area of triangle whose vertices are P(6,-2), Q(-3,5), R(-1,-2)​

Answers

Answered by dk1572005
1

correct explanation

hope you understand

Attachments:
Answered by Anonymous
0

GIVEN :-

  • Co-ordinates of triangle are P(6,-2) , Q(-3,5) , R(-1,-2).

 \\

TO FIND :-

  • Area of triangle.

 \\

TO KNOW :-

 \\   \small \boxed{\sf \: area \: of \: triangle =  \dfrac{1}{2}  \{ x_{1}( y_{2} - y_{3}) + x_{2}(y_{3} - y_{1} )+ x_{3}(y_{1}   - y_{2}) \} } \\  \\

SOLUTION :-

Here ,

  • P(x1,y1) = (6,-2)
  • Q(x2,y2) = (-3,5)
  • R(x3,y3) = (-1,-2)

Putting values in formula ,

Area of triangle ,

 \\  \sf \implies \:  \dfrac{1}{2}  \{6(5 - ( - 2)) +  ( - 3)( - 2 - ( - 2)) + ( - 1)( - 2 - 5) \} \\  \\  \implies \sf \:  \dfrac{1}{2}  \{6(5 + 2)  - 3( - 2 + 2) - 1( - 2 - 5) \} \\  \\  \implies \sf \:  \dfrac{1}{2} \{6(7) - 3(0) - 1( - 7) \} \\  \\  \implies \sf \:  \dfrac{1}{2} (42 - 0 + 7) \\  \\  \implies \sf \:  \dfrac{1}{2} (49) \\  \\

Hence , area of triangle is 49/2 unit².

Similar questions