Math, asked by Ramuh54, 1 year ago

Find the conjugate of

 \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}


Anonymous: ..

Answers

Answered by Swarnimkumar22
12
\bold{\huge{Hay!!}}

\bold{Dear\:user!!}

\bold{\underline{Question-}}
Find the conjugate of

 \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}
\bold{\underline{Answer-}}

 \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}

 = \frac{3(2 + 3i) -2i (2 + 3i)}{1(2 - i) + 2i(2 - i)} \\ \\ \\ \\ = \frac{6 + 9i - 4i - {6i}^{2} }{2 - i + 4i - {2i}^{2} } \\ \\ \\ \\ = \frac{6 + 5i + 6}{2 + 3i + 2} \\ \\ \\ \\ = \frac{12 + 5i}{4 + 3i} \times \frac{4 - 3i}{4 - 3i} \\ \\ \\ \\ = \frac{12(4 - 3i) + 5i(4 - 3i)}{ {(4)}^{2} - {(3i)}^{2} } \\ \\ \\ \\ = \frac{48 - 36i + 20i - 15i {}^{2} }{16 - {9i}^{2} } \\ \\ \\ \\ = \frac{48 - 16i + 15}{16 + 9} \\ \\ \\ \\ = \frac{63 - 16i}{25} \\ \\ \\ \\ = \frac{63}{25} - \frac{16}{25} i

Hence the conjugate of
 \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)} \: \: \: \: \: \: \: \: \: = \frac{63}{25} - \frac{16}{25} i

Be Brainly
Answered by rajeev378
18
k\huge\boxed{\texttt{\fcolorbox{red}{aqua}{Hey Mate!!!}}}
<b><i><font face=Copper black size=4 color=blue>
Here is your answer

 \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}  \\   \\  =  \frac{6 + 9i - 4i - 6 {i}^{2} }{2 - i + 4i - 2 {i}^{2} }  \\  \\  =  \frac{6 + 5i - 6 {i}^{2} }{2 + 3i - 2 {i}^{2} }  \\

Now
 \frac{6 + 5i + 6}{2 + 3i + 2}  \\  \\  =  \frac{12 + 5i}{4 + 3i}  \\  \\  =  \frac{12 + 5i}{4 + 3i}  \times  \frac{4 - 3i}{4 - 3i}  \\  \\  =  \frac{48 - 36i + 20i - 15 {i}^{2} }{ {4}^{2}  - (3i) {}^{2} }  \\  \\  =  \frac{48 - 16i + 15}{16 - 9 {i}^{2} }  \\  \\  =  \frac{63 - 16i}{16 + 9}  \\  \\  =  \frac{63 - 16i}{25}  \\  =  \frac{63}{25}  -  \frac{16i}{25}


\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\:helps\: you}}}}}}}}}}}}}}}

\huge\boxed{\texttt{\fcolorbox{Red}{yellow}{Be brainly!!!}}}

<marquee>
\huge\bf{\red{\huge{\bf{@.....rajeev378}}}}
Similar questions