Math, asked by saurabhwagh1234, 1 month ago

Find the derivative of a^x w.r.t.x (a>0) using first principle (from the definition).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: f(x) =  {a}^{x}

So,

\rm :\longmapsto\ \: f(x + h) =  {a}^{x + h}

Now,

By using definition, we have

\rm :\longmapsto\:f'(x) = \lim_{h \to 0}\dfrac{ {a}^{x + h}  -  {a}^{x} }{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{ {a}^{x}  \times  {a}^{h}  -  {a}^{x} }{h}

 \rm \:  \:  =  \: \lim_{h \to 0}\dfrac{ {a}^{x}({a}^{h} - 1)}{h}

 \rm \:  \:  =  \:  {a}^{x} \lim_{h \to 0}\dfrac{ {a}^{h} - 1 }{h}

 \rm \:  \:  =  \:  {a}^{x} \times  log(a)

 \:  \:  \:  \: \red{\bigg \{ \because \: \lim_{x \to 0}\dfrac{ {a}^{x}  - 1}{x} =  log(a)  \bigg \}}

 \rm \:  \:  =  \:  {a}^{x} log(a)

Hence,

\bf\implies \:\dfrac{d}{dx} {a}^{x} =  {a}^{x} log(a)

Additional Information :-

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{sinx}{x}  = 1}}}

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{tanx}{x}  = 1}}}

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {e}^{x}  - 1}{x}  = 1}}}

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {a}^{x}  - 1}{x}  =  log(a) }}}

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{log(1 + x)}{x}  = 1}}}

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {sin}^{ - 1} x}{x}  = 1}}}

\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {tan}^{ - 1} x}{x}  = 1}}}

\green{\boxed{ \bf{ \:\lim_{x \to 0} \: x \: sin\dfrac{1}{x} = 0}}}

Similar questions